
VOLUME 89, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 AUGUST 2002
Persistent Current in Superconducting Nanorings

K. A. Matveev,1 A. I. Larkin,2,3 and L. I. Glazman2

1Department of Physics, Duke University, Box 90305, Durham, North Carolina 27708
2Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

3L. D. Landau Institute for Theoretical Physics, Moscow 117334, Russia
(Received 12 April 2002; published 8 August 2002)
096802-1
The superconductivity in very thin rings is suppressed by quantum phase slips. As a result, the
amplitude of the persistent current oscillations with flux becomes exponentially small, and their shape
changes from sawtooth to a sinusoidal one. We reduce the problem of low-energy properties of a
superconducting nanoring to that of a quantum particle in a sinusoidal potential and show that the
dependence of the current on the flux belongs to a one-parameter family of functions obtained by solving
the respective Schrödinger equation with twisted boundary conditions.
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tent current oscillations as a function of the flux is a direct is rather complex. In particular, the most important
The properties of superconducting grains change dra-
matically when their size shrinks to a few nanometers. This
phenomenon has recently generated a lot of interest [1]. In
particular, it has been established both theoretically and
experimentally that the superconductivity cannot be ob-
served if the quantum level spacing in a nanoparticle
exceeds the superconducting gap �. The recent success
in manufacturing of superconducting nanowires [2] has
raised similar questions regarding the superconductivity
in one-dimensional objects. It has been demonstrated ex-
perimentally [3] that, as the nanowire becomes thinner, the
superconducting transition in it disappears, and a finite
resistance is observed at low temperatures. The suppres-
sion of the superconductivity in thin wires was attributed
[3] to the destruction of the phase coherence by quantum
phase slips [4,5].

To understand the superconducting properties of thin
wires, one has to keep in mind that in an infinite one-
dimensional conductor all the electronic states are local-
ized. The localization length � in a wire of cross section A
can be estimated as �� k2FAl, where kF is the Fermi wave
vector and l is the mean free path. If the length L of the
wire is shorter than �, it can be viewed as a metal grain
which becomes a good superconductor if the gap � ex-
ceeds the quantum level spacing EF=k3FAL. On the other
hand, a wire of length L� � cannot be viewed as a good
conductor, and its superconducting properties may be af-
fected by localization.

If the attractive interactions between the electrons are
weak, so that the bulk superconducting gap � is small
compared to the level spacing 	� � EF=k

3
FA� of a piece

of the wire of length �, the superconductivity is suppressed
on a microscopic scale. In the more interesting regime of
� � 	�, the superconducting gap is not affected by the
localization [6]. The important question in this regime is
that of phase coherence between the different parts of the
wire. Experimentally, this issue can be studied by measur-
ing the persistent current in a nanowire ring as a function of
the magnetic flux piercing it. The magnitude of the persis-
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measure of the superconducting phase coherence through-
out the wire.

In this Letter, we study the dependence of the persistent
current in a superconducting nanoring as a function of the
flux and the size of the ring. If the wire is relatively thick,
the electrons move freely between different parts of the
wire, and therefore the superconducting phase 
 is a well
defined classical variable. At low temperatures T � �,
there are no quasiparticle excitations in the nanoring. The
allowed states of the system differ by the phase change
’ � 
�L� �
�0� accumulated over the circumference of
the ring. At a given value � of the magnetic flux through
the ring ’ can assume the values ’m � 2��=�0 � 2�m,
where m is an arbitrary integer, and �0 � ��hc=e is the
superconducting flux quantum. The energies of these states
are given by

Em �
2�2�h2nsA
m	L

�
�

�0
�m

�
2
: (1)

Here ns is the density of superconducting electrons; m	 is
the electron mass. The dependences of the energy levels (1)
on the flux are shown by a solid line in Fig. 1(a). The
persistent current can be found as a derivative of the ground
state energy I � c dE=d� and shows the characteristic
sawtooth behavior [Fig. 1(b)].

The above picture fails in thin wires, where the fluctua-
tions of the superconducting order parameter cannot be
neglected. The most important type of the fluctuations is
the quantum phase slip [4,5] that changes the phase 
 at a
point x by 
2�. We will show that the effect of the rare
phase slips on the system reduces to quantum transitions
between the levels (1). Such transitions are most important
near the degeneracy points at half-integer values of �=�0

and result in the small level splitting shown by a dashed
line in Fig. 1(a). We will also show that the multiple
quantum phase slips in longer and thinner wires eventually
lead to a crossover from sawtooth to sinusoidal behavior of
the persistent current; see the dotted line in Fig. 1(b).

The theory of quantum phase slips in nanowires [4,5]
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FIG. 1. (a) The energy of a nanoring as a function of the flux �
through it. In the limit of relatively large cross section A, the
energy shows the classical behavior (1), shown by a solid line.
Quantum phase slips result in level splitting, shown by a dashed
line, and then lead to sinusoidal dependence of the ground state
energy on the flux (dotted line). (b) The persistent current in the
nanoring, I��� � cdE=d�. In the classical limit, the current
shows sawtooth behavior, shown by a solid line. As the wire
becomes thinner, the sawtooth is rounded and eventually trans-
forms to a sinusoidal oscillation.
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quantitative parameter describing the phase slip—its
action—can be found analytically only up to an unknown
numerical coefficient. On the other hand, the effect of the
phase slips on the ground state of the nanoring can be
studied using a much simpler model of a chain of coupled
superconducting grains considered below. Similarly to the
nanowire, the chain of grains will have quantum phase
slips that affect the persistent current in the same way.
We discuss the relation between the two models in more
detail below.

We consider a model of the chain of superconducting
grains defined by the following imaginary-time action:

S �
Z �

0
dt
XN
n�1

� _��2n
2EC

� EJ�1� cos�n�t��
�
: (2)

The grains are assumed to be connected by tunnel junctions
with Josephson coupling energy EJ; the capacitance of
each junction C gives rise to the charging energy EC �
�2e�2=C; the variable �n is the phase difference across the
nth junction; � � 1=T. To model a closed chain pierced by
flux � � �’=2���0, one should impose an additional
condition

XN
n�1

�n�t� � ’ (3)

on the phases �n. Note that the action (2) does not include
the charging energy terms due to the self-capacitance of the
grains. These terms, characterized by charging energy ~EEC
per grain, are known [7] to give rise to a Kosterlitz-
Thouless type quantum phase transition in an infinite chain
of Josephson junctions at EJ=~EEC � 1. The use of model (2)
is motivated by the fact that the electric field is very well
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screened in metal wires which corresponds to the condition
~EEC � EJ; EC.

The ground state properties of the chain can be derived
from the partition function Z �

R
e�SD�n in the limit�!

1. In this Letter, we consider the case of strong coupling
between the grains EJ � EC. At EC � 0 the phases �n
become classical variables, and the energy states of the
chain can be found by minimizing the sum of the
Josephson energy terms in the action (2) with the constraint
(3). At a large number of contacts N � 1, one finds

Em �
EJ
2N

�’� 2�m�2; (4)

in complete analogy with Eq. (1) for a metal ring.
At finite small EC the fluctuations of �n�t� should be

taken into consideration. First, one can include the
Gaussian fluctuations around the classical solutions
�n�t� � const. This is accomplished by expanding the
cosine in the action (2) up to quadratic terms in �n. The
resulting correction to the ground state energy 	Em �
�N � 1�

������������
EJEC

p
accounts for the zero-point oscillations of

the particles in the minima of the cosine potential. This
constant correction does not affect the shape of the oscil-
lations of the persistent current I � �2e=�h�dE=d’. One can
also include the anharmonic terms of the expansion of the
cosine potential in the action (2). The resulting corrections
yield, in EC=EJ, a small distortion of the sawtooth depend-
ence I���, but do not significantly affect the discontinuities
at half-integer �=�0.

A more interesting fluctuation of the phases �n�t� in-
volves an instanton (quantum phase slip), i.e., a trajectory
that begins near one of the minima (4) of the potential
energy in action (2) at t � 0 and ends near another mini-
mum at t � �. For instance, a trajectory starting at �n�0� �
’=N and ending at �n��� � �’� 2��=N � 2�	nk for
arbitrary k in the interval 1 � k � N connects the minima
(4) with m � 0 and m � �1. The shape of the instanton
trajectory can be found by minimizing the classical action
(2) with the above boundary conditions on �n�t�. In the
case of a large number of junctions N � 1 the dominant
contribution is due to the contact k where the phase slip
occurs, and the contributions of the other contacts can be
neglected. Then one obtains the usual result

�k�t� � 4 arctan exp�
������������
EJEC

p
�t� t0��; (5)

where t0 is the arbitrary moment in time where the phase
slip is centered; we have assumed the limit of low tem-
perature T �

������������
EJEC

p
. The action associated with this in-

stanton trajectory is S0 � 8
��������������
EJ=EC

p
[8].

The instantons account for the possibility of the system
tunneling between the different minima (4) of the potential
energy in action (2). The effect of the instantons on the
ground state energy can be accounted for by considering a
tight-binding Hamiltonian defined as

H m � Em m � Nv� m�1 �  m�1�: (6)
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Here  m is the amplitude of the system at the state m with
energy Em given by Eq. (4). The hopping matrix element is
exponentially small,

v �
4����
�

p �E3
JEC�

1=4 exp

 
�8

������
EJ
EC

s !
; (7)

where the exponent coincides with the instanton action S0,
and the prefactor can be obtained by considering the prob-
lem (2) in the case of a single junction [without the con-
straint (3)].

It is important to note that for any k the set of phases
�n � �’� 2��=N � 2�	nk describes the same physical
state of the chain. Thus the hopping matrix elements due to
the instantons (5) in all the N junctions must be summed
up, resulting in the additional factor of N in the hopping
term in the Hamiltonian (6).

At Nv� EJ=N the hopping term is small compared
with the diagonal matrix elements in the Hamiltonian (6).
Its effect is most significant when �=�0 is a half-integer,
and the energy levels Em are degenerate [Fig. 1(a)]. In this
regime hopping gives rise to the level repulsion shown by
the dashed line in Fig. 1(a) and the respective rounding of
the sawtooth in current [Fig. 1(b)]. The shape of the current
steps is given by

I �
2eEJ
�hN


%�

�%��������������������������������������
%2 � �vN2=�EJ�

2
p �

; (8)

where % � ’� � � 2���=�0 � 1=2� � 1.
In general, hopping affects the spectrum of the

Hamiltonian (6) dramatically. To find the ground state en-
ergy E�’�, it is more convenient to apply the Hamiltonian
(6) to the wave function in ‘‘coordinate representation,’’
 �x� �

P
m  me

i�2m�’=��x. The resulting Schrödinger
equation then takes the form of Mathieu equation:

 00�x� � �a� 2q cos2x� �x� � 0; (9)

where parameter a � 2NE=�2EJ is proportional to the
energy E, and q � N2v=�2EJ. The phase ’ enters the
problem via a twisted boundary condition  �x� �� �
e�i’ �x�. The regime of strong hopping in the
Hamiltonian (6) corresponds to q� 1. In this case, the
dependence of the eigenvalue a on the phase ’ is expo-
nentially small, a � �16

���������
2=�

p
q3=4e�4

��
q

p
cos’ (Ref. [9]).

For the persistent current I � �2e=�h�dE=d’, we then find

I � 16
�������
2N

p e
�h
�EJv3�1=4 exp

�
�

4

�
N

������
v
EJ

r �
sin’: (10)

It is important to note that the Schrödinger equation for
the Hamiltonian (6) coincides with Eq. (9) at arbitrary
hopping strength q. Thus the problem of the flux depend-
ence of the persistent current reduces to the solving of the
well known Mathieu equation (9) with the appropriate
twisted boundary conditions. This conclusion is our main
result. The shape of the current oscillations is controlled by
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a single parameter q. As q changes from 0 to 1, the shape
crosses over from sawtooth to the sinusoidal behavior.

The Hamiltonian (6) has been rigorously derived for the
model (2) of a chain of coupled superconducting grains.
Although nanorings are not described by this model, the
essential low-energy physics of a superconducting state
being destroyed by quantum phase slips remains the
same, and the Hamiltonian (6) and the respective
Schrödinger equation (9) are still valid.

To apply the Hamiltonian (6) to superconducting nanor-
ings, one needs to relate the matrix elements Em and Nv to
the parameters describing the nanowires, such as their
length L, coherence and localization lengths ) and �, etc.
The diagonal matrix elements Em are given by their clas-
sical values (1). The important difference between nano-
wires and chains of superconducting grains appears in
evaluating the hopping matrix element Nv. In the absence
of tunneling barriers, the quantum phase slips must involve
suppression of the superconducting gap � in the wire. The
typical volume of space where the gap is suppressed is V �
A). Given the condensation energy per unit volume "�
m	kF�2 and the typical correlation time ,� 1=�, one can
estimate the phase slip action in the wire S0 � "V,�������������
�=	�

p
� �=). A more rigorous treatment [4,5] of the

quantum phase slips gives rise to the same result, but
unfortunately the numerical coefficient cannot be obtained
analytically. Taking into account the obvious analogy be-
tween the number of Josephson contacts N and the length
L of the wire, we conclude Nv / Le�S0 , with S0 � �=).

Another feature of realistic nanowires not included in
our model of a chain of Josephson junctions is the meso-
scopic fluctuations introduced by the disorder. For in-
stance, since the instanton action depends on the mean
free path, the fluctuations of the random potential can
lead to the fluctuations of S0. This effect should lead to
mesoscopic fluctuations of the persistent current; the mag-
nitude of the fluctuations is expected to be small in rela-
tively thick wires.

A more subtle effect of the random potential affects the
relative phases of instantons in different parts of the wire. It
can be explored within our model by adding gates to the
grains and applying random gate voltages. It has been
shown recently [10,11] that the gate voltages give rise to
Aharonov-Casher interference effects for the instantons in
different junctions and under certain conditions can sup-
press the effects of the phase slips.

To account for the effect of the random gate potential on
the persistent current, we present the electrostatic charging
energy of the chain as

HC �
X
nl

1

2
�C�1�nl�Qn � qn��Ql � ql�; (11)

where �C�1�nl is the matrix of inverse capacitances of the
system,Qn is the charge at the nth grain. Parameters qn are
determined by the gate voltages and have the meaning of
the values of the charges Qn at which the electrostatic
energy is minimized.
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Using the fact that the grain charge Qn and phase 
n are
conjugate variables and introducing �n � 
n �
n�1 �
’=N, one rederives the imaginary-time action (2) with an
additional term

	S � �i
X
n

pn _��n; pn � q1 � q2 � . . .� qn; (12)

accounting for the gate voltages. Since the instanton (5)
corresponds to a trajectory where the phase in contact k
changes by 2�, the respective contribution to the hopping
matrix element in the Hamiltonian (6) has an additional
phase ei2�pn . Therefore, for the total hopping matrix ele-
ment we obtain v

P
n e

i2�pn instead of Nv, in agreement
with Ref. [10]. If the random gate voltages are sufficiently
strong, so that qn � 1, the average of the hopping matrix
element in the Hamiltonian (6) vanishes: hv

P
n e

i2�pni �
0. Its typical values are of the order of the mean square
fluctuation, thus decreasing from Nv in the regular case to
�

����
N

p
v in the case of random charges. In the limit of large

N, the same square-root dependence on the length of the
chain will result even from weak disorder. This suppression
of the effect of phase slips results in a higher value of the
persistent current, which can be estimated by replacing
v! v=

����
N

p
in Eqs. (8) and (10). The most significant

change in the properties of the persistent current caused
by the random gate potential is that, instead of lnI / �N,
we find a slower dependence lnI / �N3=4 on the length of
the chain at large N.

It is worth noting that the above result cannot be ob-
tained from the action averaged over the random gate
potentials qn. Indeed, one can easily see that h	Si � 0,
thereby restoring our previous results (8) and (10). A term
similar to (12) also appears in the theory of the persistent
current in disordered wires. This term breaks the transla-
tional invariance and destroys the zero mode of the instan-
ton action. Thus, the conventional argument that the zero
mode gives rise to the prefactor of the instanton contribu-
tions to the matrix elements proportional to the length of
the system does not apply. Consequently, we expect the
total matrix element in the Hamiltonian (6) to behave as����
L

p
e�S0 , leading to the persistent current lnI /

�L3=4e�S0=2. Averaging of the action over the disorder
would restore the zero mode and lead to the incorrect result
lnI / �Le�S0=2.

Our theoretical predictions can be tested in devices
similar to those of Refs. [2,3]. Although we discussed the
geometry of a nanoring of uniform thickness, all the con-
clusions are applicable in the case of a straight nanowire
with ends shorted by a bulk superconductor. In this geom-
etry only the quantum phase slips in the nanowire part
should be considered, and thus the length of the system L is
that of the nanowire only. The most interesting theoretical
prediction to be tested in such devices is the dependence of
the persistent current on the magnetic flux �. The depend-
ence I��� evolves from sawtooth to the sinusoidal one,
Fig. 1(b), as the nanowire becomes longer and/or thinner.
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We expect that the experimentally measured shape of the
oscillations of I��� can be fitted to the function da�’�=d’,
determined from the Mathieu equation (9). The only free
parameter in such a fit is the effective phase slip strength q.

Another type of systems to which our predictions should
apply is the one-dimensional arrays of Josephson junc-
tions. Recently, it became possible to tune the Josephson
coupling energy in such devices by external magnetic field
[12]. As a result, one should be able to study the whole
crossover from sawtooth to sinusoidal dependence of I���
in a single sample.

In conclusion, we have studied the persistent current in
nanoscale superconducting rings. As the wire becomes
thinner, the quantum phase slips begin to suppress the
current and change its flux dependence I���. The latter
can be found by solving the Mathieu equation (9) with the
appropriate boundary condition. The Aharonov-Casher in-
terference suppresses the effects of the phase slips and
gives rise to the unusual length dependence lnI / �L3=4.
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